Functions on Distributive Lattices with the Congruence Substitution Property: Some Problems of Grätzer from 1964
نویسندگان
چکیده
منابع مشابه
Functions on Distributive Lattices with the Congruence Substitution Property: Some Problems of Grätzer from 1964
Let L be a bounded distributive lattice. For k 1, let Sk (L) be the lattice of k-ary functions on L with the congruence substitution property (Boolean functions); let S(L) be the lattice of all Boolean functions. The lattices that can arise as Sk (L) or S(L) for some bounded distributive lattice L are characterized in terms of their Priestley spaces of prime ideals. For bounded distributive lat...
متن کاملDistributive Congruence Lattices of Congruence-permutable Algebras
We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملFinite distributive lattices are congruence lattices of almost- geometric lattices
A semimodular lattice L of finite length will be called an almost-geometric lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at most two-element chains. We prove that each finite distributive lattice is isomorphic to the lattice of congruences of a finite almost-geometric lattice.
متن کاملBelief Functions on Distributive Lattices
The Dempster-Shafer theory of belief functions is an important approach to deal with uncertainty in AI. In the theory, belief functions are defined on Boolean algebras of events. In many applications of belief functions in real world problems, however, the objects that we manipulate is no more a Boolean algebra but a distributive lattice. In this paper, we extend the Dempster-Shafer theory to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2000
ISSN: 0001-8708
DOI: 10.1006/aima.1999.1854